Алюминий АО20-1
Марка: АО20-1 | Класс: Алюминиевый антифрикционный сплав |
Использование в промышленности: для получения биметаллической ленты со сталью и дюралюминием методом прокатки с последующей штамповкой вкладышей с толщиной антифрикционного слоя менее 1 мм. |
Химический состав в % сплава АО20-1 | ||
Fe | до 0,5 | |
Si | до 0,5 | |
Ti | 0,02 - 0,2 | |
Al | 74,25 - 82,28 | |
Cu | 0,7 - 1,2 | |
Zn | до 0,25 |
Дополнительная информация и свойства |
Удельный вес: 3200 кг/м3 Твердость материала: HB 10 -1 = 28 - 33 МПа |
Механические свойства сплава АО20-1 при Т=20oС | |||||||
Прокат | Размер | Напр. | σв(МПа) | sT (МПа) | δ5 (%) | ψ % | KCU (кДж / м2) |
100-120 | 65-77 | 29-35 | 58.5-72 | 600-750 |
Физические свойства сплава АО20-1 | ||||||
T (Град) | E 10- 5 (МПа) | a 10 6 (1/Град) | l (Вт/(м·град)) | r (кг/м3) | C (Дж/(кг·град)) | R 10 9 (Ом·м) |
20 | 23 | 160 | 3200 |
Производство многослойных (биметаллических) листов из алюминия АО20-1 (и подобных): Для соединения листов металла и алюминия в биметаллический лист производится их обжатие при холодной и горячей прокатке.
Выбор необходимых обжатий при прокатке многослойных пакетов более сложен, чем при деформации монометаллов.
Связано это с тем, что от величины обжатия зависят не только качество поверхности, механические свойства и структура металла, но и то необходимое давление, в результате которого возникает прочное сцепление слоев. От принятого обжатия зависит и величина чистой (ювенильной) поверхности металлов в зоне пластической деформации, которая способствует появлению мостиков сцепления.
Особенно тщательный выбор обжатий необходим при совместной холодной прокатке многослойных металлов, так как значительные силы упругой отдачи могут после снятия давления разрушить сцепление слоев, полученное при совместной деформации.
Весьма трудно получить совместной холодной прокаткой прочное сцепление слоев в многослойных листах при большой толщине слоев.
В связи с этим многослойные листы большой толщины получают только совместной горячей прокаткой.
Поскольку упругая деформация в слоях металла при горячей прокатке незначительна, обжатие в первом проходе должно обеспечить удельные давления, достаточные для первоначального сцепления слоев, что предохранит поверхность контакта соединяемых металлов от дальнейшего окисления. Это относится к тем металлам, у которых окисная пленка хрупка и легко разрушается. Так, например, при плакировке алюминиевых сплавов алюминием величина абсолютного обжатия в первых проходах не оказывает заметного влияния на прочность сцепления слоев. Аналогичные результаты получены при прокатке биметаллических листов алюминиевые сплавы — сталь Х18Н10Т.
Прочные металлические связи развиваются при последующей деформации и при определенном суммарном обжатии достигают своего максимального значения.
Объясняется это разрушением окисных пленок в процессе деформации, в результате площадь мостиков сцепления увеличивается, а следовательно, повышается прочность сцепления слоев.
Однако это наблюдается только в том случае, когда удельные давления достаточны для образования прочных металлических связей.
Если же металлы подвержены сильному окислению, окисная пленка имеет большую толщину и достаточно вязка, чтобы не разрушаться при малых степенях деформации; для разрушения пленки требуется значительное первое обжатие.
При совместной горячей прокатке меди с алюминиевыми сплавами на воздухе окисная пленка на меди настолько велика, что прочное сцепление слоев не возникает при обжатии за проход 70% и более.
Высокие обжатия в первом проходе требуются в том случае, если схема прокатки многослойного пакета такова, что легко упрочняющиеся металлы подвержены меньшей деформации. Тогда в связи с большой неравномерностью послойной деформации необходимы высокие обжатия для полного разрушения окисной пленки на упрочняемых металлах.
Так, например, при асимметричном способе прокатки стали с алюминиевыми сплавами обжатие за проход достигает более 80% и в основном обжимается только алюминиевый сплав, сталь же остается недеформированной.
В то же время при совместной прокатке алюминиевых сплавов со сталью в симметричных пакетах, когда неравномерность по слойной деформации наименьшая, требуется всего 30—35% обжатия для получения высокой прочности сцепления слоев.
При совместной прокатке металлов, которые в значительной степени различаются по сопротивлению деформированию, всегда возникает большая или меньшая неравномерность послойной деформации, которая зависит также от соотношения слоев и толщины исходного пакета. Поэтому в зоне пластической деформации значительно изменяется напряженное состояние. В более прочном слое возникают дополнительные растягивающие напряжения, и в менее прочном слое — дополнительные сжимающие напряжения.
Ввиду того, что основные продольные сжимающие напряжения в твердом слое невелики, при значительных дополнительных растягивающих напряжениях рабочие напряжения также растягивающие. Если рабочие растягивающие напряжения превысят предел прочности, то в более прочном металле может произойти разрыв.
Изложенное наблюдается при высоких обжатиях за проход.
В связи с этим обычно увеличивают число проходов. Дробность деформации не оказывает заметного влияния на прочность сцепления слоев при совместной горячей прокатке многослойных листов. Однако уменьшение обжатия за проход и увеличение дробности деформации при совместной холодной прокатке разнородных металлов уменьшает прочность сцепления слоев. Объясняется это увеличением неравномерности послойной деформации. Образовавшиеся «мостики» сцепления ввиду большой неравномерности послойной деформации разрушаются. Таким образом, старые металлические связи нарушаются, а новые, ввиду недостаточности давления (связанного с малой деформацией), не возникают.
Поэтому при холодной прокатке многослойных листов, если один из металлов легко упрочняемый, обжатия должны быть максимальными и чередоваться с промежуточными отжигами.
Величина допустимого обжатия ограничивается также условием захвата многослойного металла валками, которое отличается от условий захвата при прокатке монометаллов.
При прокатке многослойных металлов для обеспечения лучших условий захвата валками часто используют сдвиг одного слоя относительно другого. Это обеспечивает высокие обжатия в первом проходе, достигающие 75—85%, что соответствует углам захвата, близким к установившемуся процессу прокатки.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σtТ | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |