Алюминий АО9-1
Марка: АО9-1 | Класс: Алюминиевый антифрикционный сплав |
Использование в промышленности: для получения биметаллической ленты со сталью и дюралюминием методом прокатки с последующей штамповкой вкладышей с толщиной антифрикционного слоя менее 1 мм. |
Химический состав в % сплава АО9-1 | ||
Fe | до 0,5 | |
Si | до 0,7 | |
Ti | 0,02 - 0,2 | |
Al | 87,05 - 91,18 | |
Cu | 0,8 - 1,2 | |
Zn | до 0,25 | |
Sn | 8 - 10 |
Дополнительная информация и свойства |
Твердость материала: HB 10 -1 = 29 - 35 МПа |
Механические свойства сплава АО9-1 при Т=20oС | |||||||
Прокат | Размер | Напр. | σв(МПа) | sT (МПа) | δ5 (%) | ψ % | KCU (кДж / м2) |
105-125 | 70-80 | 30-35 | 70-75 | 750-850 |
Физические свойства сплава АО9-1 | ||||||
T (Град) | E 10- 5 (МПа) | a 10 6 (1/Град) | l (Вт/(м·град)) | r (кг/м3) | C (Дж/(кг·град)) | R 10 9 (Ом·м) |
20 | 3000 |
Производство биметаллических листов из сплва АО9-1 (и других): Помимо широко распространенных биметаллов типа алюминий+сталь или алюминий+дюраль, промышленность также выпускает биметаллы типа алюминий+медь. Опишем производство биметалла алюминий+медь подробнее. В качестве заменителя меди в новых конструкциях в электротехнической промышленности с упспехом применяется алюминий и его сплавы, плакированные медью. Толщина медной плакировки обычно составляет 0,2—0,4 мм.
Биметаллическую полосу (плакированную медью с одной стороны) получают путем холодной прокатки рулонов. Перед прокаткой полосы зачищают на специальном зачистном агрегате, оборудованном разматывателем, правильной машиной, несколькими зачистными устройствами, сматывающим барабаном.
Процесс зачистки заключается в следующем: рулон алюминия или меди помещают в разматыватель и подают в правильную машину, которая одновременно служит задающим устройством для подачи полосы в зачистной станок. Скорость зачистки 3-4 м/мин.
Барабаны оборудованы проволочными щетками с толщиной проволоки 0,3—0,4 мм.
Прокатка осуществляется с обжатием за проход 60—70%; возникающие при этом удельные давления достигают 35—45 кГ/мм2.
Отжиг ленты проводят в проятжных печах. Зависимость скорости протяжки полосы от температуры отжига приведена ниже:
Температура отжига, °С 625—675 675—725 725—825
Скорость протяжки полосы, м/мин 3—3,5 4—4,5 4—5
Скорость отжига подбирают таким образом, чтобы продолжительность нагрева, разупрочняя медь, исключала образование хрупкого слоя.
Биметаллические полосы толщиной 10—18 мм с тонким покрытием медью холодной прокаткой получить не удается, так как для этого требуются очень высокие давления.
Горячая прокатка также вызывает трудности, так как нагрев под прокатку алюминия с медью в негерметизированных или невакуумированных пакетах не представляется возможным ввиду значительного окисления меди.
В связи с этим в промышленности~применяется так называемый «планшетный» способ плакирования алюминия медью, сущность которого заключается в следующем: на первом этапе путем холодной или теплой прокатки изготавливают планшеты алюминий—медь—алюминий. На втором этапе алюминиевую заготовку плакируют трехслойным планшетом уже путем горячей прокатки. Для изготовления планшета используют медь Ml и алюминий.
Поверхность заготовок очищают от окислов и загрязнений механическими проволочными щетками. При холодной прокатке медные карточки зачищают с обеих сторон, алюминиевые — с одной. Между зачищенными карточками алюминия помещают медную заготовку. Прокатку планшетов производят в холодном состоянии за один проход с обжатием 65—75%. Возникающие при этом удельные давления достигают 32—36 кГ/мм2 и обеспечивают прочное сцепление слоев.
Прокатанные в холодном состоянии планшеты подвергают правке, резке в меру и перед горячей прокаткой с алюминием — травлению или зачистке.
Плакировка алюминиевых заготовок медью может быть односторонней, двусторонней, сплошной или частичной.
Пакеты нагревают при 370° С в печи электросопротивления с принудительной циркуляцией воздуха. Продолжительность нагрева не более 1—1,5 ч. Обжатие в первом проходе должно быть не менее 35—40%. Прокатку осуществляют в 3—5 проходов в зависимости от исходной толщины заготовки.
Окончательная операция отделки листов и плит, плакированных медью, заключается в стравливании верхнего слоя алюминия, который уходит в шлам.
Широкое распространение получила новая технология соединения алюминия с медью, при которой на нагретую до температуры горячей прокатки алюминиевую заготовку накладывают холодную медную заготовку и осуществляют прокатку пакета. Этот способ упрощает технологический процесс изготовления биметалла алюминий—медь. Отпадает необходимость защиты меди алюминием от окисления, не требуется стравливания алюминиевого слоя, исключается предварительная холодная прокатка меди, а следовательно, и промежуточный отжиг, который ослабляет прочность сцепления слоев. При новом методе не образуются интерметаллические слои на границе медь-алюминий, поскольку продолжительность деформации ниже времени, необходимого для образования хрупких соединений.
Прогладку осуществляют в симметричных пакетах (при односторонней плакировке). Обжатие в первом проходе 40—45% при суммарном 80% обеспечивает высокую прочность сцепления слоев алюминия с медью.
Нагрев алюминиевой заготовки перед прокаткой производят до температуры 320—460° С. Этот интервал не оказывает заметного влияния на прочность сцепления слоев, и их механические свойства.
Для повышения пластических свойств производят отжиг листов при 250° С с выдержкой от 2 до 6 ч в зависимости от толщины листа; прочность сцепления слоев при этом не снижается.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σtТ | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |