Алюминий АД33
Марка: АД33 | Класс: Алюминиевый деформируемый сплав |
Использование в промышленности: для изготовления деталей средней прочности и высокой коррозионной стойкости, работающих в интервале от -70 до 50 град., во влажной атмосфере и морской воде |
Химический состав в % сплава АД33 | ||
Fe | до 0,7 | |
Si | 0,4 - 0,8 | |
Mn | до 0,15 | |
Cr | 0,15 - 0,35 | |
Ti | до 0,15 | |
Al | 95,85 - 98,5 | |
Cu | 0,15 - 0,4 | |
Mg | 0,8 - 1,2 | |
Zn | до 0,25 |
Дополнительная информация и свойства |
Удельный вес: 2710 кг/м3 Твердость материала: HB 10 -1 = 80 МПа |
Механические свойства сплава АД33 при Т=20oС | |||||||||||
Прокат | Толщина или диаметр, мм | E, ГПа | G, ГПа | σ-1, ГПа | σв, (МПа) | σ0,2, (МПа) | δ5, (%) | ψ, % | σсж, МПа | KCU, (кДж/м2) | KCV, (кДж/м2) |
Лист неплакированный отожженный | 2-4 | 71 | 26,5 | 100 | 140 | 80 | 20 | ||||
Лист неплакированный закаленный и естественно состаренный | 2-4 | 230 | 120 | 19 | |||||||
Лист неплакированный закаленный и искусственно состаренный | 2-4 | 310 | 260 | 14 | 260 | ||||||
Профиль прессованный | 20 | 90 | 320 | 280 | 12 | 25 | 280 | 0,3 |
Механические свойства сплава АД33 при высоких температурах | |||||
Прокат | T испытания | σв, (МПа) | σ0,2, (МПа) | δ5, (%) | ψ, % |
Лист неплакированный закаленный и искусственно состаренный 2 мм | 20 100 200 250 300 | 300 260 190 140 80 | 250 210 170 125 70 | 15 15 17 18 11 | |
Профиль, пруток прессованный закаленный и искусственно состаренный 20 мм | 20 100 200 300 | 330 280 200 90 | 270 240 180 80 | 12 12 11 8 | 30 40 55 70 |
Механические свойства сплава АД33 при низких температурах | |||||
Прокат | T испытания | σв, (МПа) | σ0,2, (МПа) | δ5, (%) | ψ, % |
Лист закаленный и искуственно состаренный 2 мм | 20 -70 -196 | 300 330 400 | 250 270 290 | 15 16 22 | |
Профиль пресованный закаленный и искусственно состаренный 20 мм | 20 -70 -196 | 330 350 430 | 270 290 310 | 12 14 16 | 30 30 25 |
Физические свойства сплава АД33 | ||||||
T (Град) | E 10- 5 (МПа) | a 10 6 (1/Град) | l (Вт/(м·град)) | r (кг/м3) | C (Дж/(кг·град)) | R 10 9 (Ом·м) |
20 | 0.71 | 2710 | 43.8 | |||
100 | 23.2 | 151 | 945 |
Производство проката прессованием из алюминиевых сплавов АД33 и подобных: на прессованных изделиях из алюминиевых сплавов трещины в процессе прессования появляются при вполне определенной критической температуре металла в зоне деформации. Критическая температура колеблется в узком интервале (5—10 град), зависит от сплава и практически не зависит от остальных факторов (состояния заготовки, степени деформации, наличия и вида смазки и др.). Для сплава Д16 критической температурой следует считать 485—495° С, для сплава АВ 520- 530° С, для сплава В95 470-480° С.
В соответствии с изложенным слитки перед прессованием следует нагревать до минимально возможных температур для данного сплава, если выбор температуры слитка не вызван требованиями к структуре и свойствам изделий. Желательно, чтобы максимальная температура в очаге деформации не превышала температуры максимальной пластичности сплава, которая определяется из диаграмм пластичности. Температура слитка должна быть на 50—100 град ниже температуры максимальной пластичности металла.
Рекомендуемые и предельно допустимые температуры нагрева слитков перед прессованием приведены в таблице ниже.
Рекомендуемые и предельно допустимые температуры нагрева слитков перед прессованием | |||
Марка сплава | Изделие | Температура нагрева слитков, °C | |
рекомендуемая | предельно допустимая | ||
Д1, Д16 | Прутки | 380-450 | 490 |
АК2, АК4, АК4-1, АК6, АК8, АВ | Прутки с регламентируемым крупнокристаллическим ободком | 410-430 | 515 |
АД1, АД, АМц, АМг2, АД0, АД00 | Прутки, профили | 420-480 | 550 |
В92, АЦМ | Прутки, профили | 380-450 | 490 |
В93, В95 | Прутки, профили | 360-450 | 465 |
В95 | Профили с законцовкой | 410-440 | 465 |
АК2, АВ, АК4, АК6, АК8, АК4-1 | Профили | 380-470 | 515 |
Д1, Д16 Д16 Д16 Д16 | Профили обычные Профили: законцовочные лонжеронные повышенной прочности | 360-460 420-440 430-470 420-460 | 490 |
АМг3, АМг5, АМг6, АМг6-1 | Прутки Профили: обычныесложные пустотелые | 400-460 420-500 | 520 |
АД31, АД33 | Прутки, профили | 440-510 | 550 |
Для определения скорости истечения при прессовании профилей из других сплавов могут быть использованы следующие коэффициенты: для профилей сплавов Д1, АК6, АМгЗ — 1,2; для профилей и прутков сплава В95—0,7—0,8; для прутков сплавов АК6, АК8, АМг2, АМгЗ — 2-3.
Скорость истечения профилей сложной конфигурации из сплавов АМг5, АМгб составляет 0,1-0,2 м/мин, профилей из сплавов АВ, АД31, АДЗЗ 8-20 м/мин.
Основное отличие метода прессования с обратным истечением от прессования с прямым истечением, как показано, заключается в том, что слиток в течение всего процесса остается неподвижным относительно контейнера. Пластическая деформация слитка в этом случае начинается в непосредственной близости к матрице; упругая зона, которая имеется при прессовании с прямым истечением, почти не наблюдается. Неравномерность деформации при прессовании с обратным истечением резко уменьшается как по длине, так и по сечению изделия.
При данном методе прессования уменьшается (нередко более чем на 40%) потребное усилие прессования, сокращаются технологические отходы благодаря уменьшению длины распространения прессутяжины. Кроме того, при прессовании с обратным истечением почти полностью устраняется крупнокристаллический ободок и получаются профили с равномерными свойствами по сечению и по длине.
Несмотря на целый ряд преимуществ метода прессования с обратным истечением, большого распространения данный метод до последнего времени не получил. Это объясняется тем, что конструкции большинства действующих прессов не приспособлены для прессования с обратным истечением (ограниченный ход контейнера и мундштука, невозможность отделения прессостатка и др.).
В настоящее время создан ряд новых инструментальных наладок, позволяющих осуществить метод прессования с обратным истечением на большинстве прутково-профильных прессов, а также значительно расширить номенклатуру изделий, прессуемых данным методом.
На рисунке ниже показана схема сборки инструмента для обратного прессования, отличающаяся тем, что вместо пробки, перекрывающей обычно контейнер при обратном прессовании, к траверсе пресса крепится прессштемпель прямого действия. Прессование осуществляется следующим образом. После загрузки слитка в контейнер и отвода последнего в исходное положение в горловину пресса подается мундштук с закрепленным в нем прессштемпелем обратного действия, на торце которого крепится матрица. Усилие пресса в данном случае через прессштемпель прямого действия и прессшайбу передается непосредственно на слиток, после чего начинается процесс истечения металла.
После окончания прессования снимается давление с главного плунжера, открывается клин, удерживающий мундштук с матричным комплектом, и ходом главного плунжера прессостаток и матрица обратного действия проталкиваются через контейнер. В тот момент, когда матрица выйдет из контейнера, а прессостаток находится в нем, дается ход выдвижному столу пресса. За счет этого матрица отрывается от прессостатка, прессованные изделия выходят из очка матрицы. После этого ходом главного плунжера прессостаток выталкивается из контейнера и выдвижной стол выдвигается из горловины пресса.
Отделение прессостатка от изделия может быть осуществлено или при помощи маятниковой пилы, или при помощи гидравлических ножниц.
Рассмотренный метод осуществим на большинстве существующих прессов. При его использовании возможно обратное прессование прутков и профилей в одно- и многоочковые матрицы, а также профилей с законцовками.
Крупногабаритные изделия прессуют по схеме, показанной на рис. 74. Основное ее отличие в том, что в пробку, перекрывающую контейнер пресса, вмонтировано специальное устройство для отделения прессостатка. Прессование в данном случае осуществляется обычным способом. Устройство для отделения пресс-остатка работает следующим образом. После выпрессовки матрицы и прессостатка из контейнера главный плунжер отводят назад. Так как на торце прошивных стержней имеется специальный карман для затечки металла прессостатка, происходит сцепление прошивных стержней с прессостатком, поэтому при движении главного плунжера назад стержень выдвигается из пробки.
Прошивные стержни закреплены на специальном диске, который является одним из элементов байонетного соединения, фиксирующего прошивные стержни в исходном положении для прошивки прессостатка. Привод байонетного соединения осуществляется при помощи пневматического цилиндра, вмонтированного в пробку. Данный метод прессования используется для получения прутков диаметром 70—250 мм в одно,- двух- и четырехочковые матрицы.
Из описания схем прессования с обратным истечением видно, что вспомогательные операции, входящие в цикл прессования, более сложны, чем при прямом прессовании: на их выполнение требуется значительно больше времени.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σtТ | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |