Алюминий Д12
Марка: Д12 | Класс: Алюминиевый деформируемый сплав |
Использование в промышленности: для изготовления полуфабрикатов методом горячей или холодной деформации |
Химический состав в % сплава Д12 | ||
Fe | до 0,7 | |
Si | до 0,7 | |
Mn | 1 - 1,5 | |
Ti | до 0,1 | |
Al | 95,4 - 98,2 | |
Cu | до 0,1 | |
Mg | 0,8 - 1,3 | |
Zn | до 0,1 |
Дополнительная информация и свойства |
Коррозионные свойства сплава Д12: алюминий различной степени чистоты и сплавы типа АМЦ и Д12 относятся к группе стойких сплавов, для которых наиболее характерным видом коррозии является питтинговая. Основные закономерности влияния легирующих элементов и структурной анизотропии таких материалов рассмотрены в гл. II и IV. Показано, что коррозионная стойкость алюминия различных сортов определяется в значительной степени содержанием примесей, главным образом железа и кремния. Кремний влияет в меньшей степени при содержании до 0,3 % потому, что в отсутствии железа он находится в твердом растворе, Его влияние не столько велико и при выделении в свободном виде, если эти выделения дисперсны и равномерно распределены, так как, несмотря на довольно положительный электродный потенциал, кремний не является эффективным катодом. При содержании 0,3-0,7 % кремний, как и железо, заметно понижает сопротивление питтинговой коррозии. Особенно существенно сопротивление питтинговой коррозии понижается при увеличении содержания железа выше 0,6 %. В этом случае при воздействии агрессивной пресной воды питтинги сливаются, образуя пространные и глубокие язвы.
Однако в реальных сплавах нельзя разделить железо и кремний, поэтому обычно рассматривают суммарное их влияние. Влияние этих примесей на коррозионную стойкость проявляется по-разному в зависимости от рН среды. В кислой среде, где процесс протекает с водородной деполяризацией, оно весьма ощутимо из-за низкого перенапряжения выделения водорода на железе и его соединениях. В нейтральной и щелочной средах в относительно широких пределах содержания железа (0,005-0,5 %) скорость коррозии изменяется мало. В нейтральных водных средах малой концентрации, когда коррозия алюминия происходит большей частью вследствие кислородной деполяризации, железо практически не изменяет стационарный потенциал и не влияет на скорость коррозии. При этом значительное увеличение катодных элементов в алюминии низких сортов несколько облагораживает потенциал питтингообразования, в результате чего в ряде сред, например в промышленной атмосфере, характер коррозии изменяется: вместо питтинга практически наблюдается равномерная коррозия. При возрастании концентрации солей в растворе, например, в морских условиях, отрицательное влияние железа проявляется в большей степени.
Положительное влияние железо может оказывать также в связи с его модифицирующими свойствами и способностью тормозить процесс рекристаллизации. По этой причине в технических сортах алюминия зерно становится мельче, чем в алюминии повышенной чистоты. В результате глубина коррозионных поражений уменьшается.
Немаловажным является также то, что повышение чистоты, обычно сопровождающееся увеличением размера зерен, ведет к увеличению чувствительности к структурной форме МКК, обусловленной пониженной термодинамической устойчивостью высокоугловых границ. Если дополнительно не измельчать зерна какими-либо способами, то оптимальным материалом относительно сопротивления МКК является алюминий марки А7 (~АД00).
В сплавах системы Al-Мп-Mg (например, Д12) сочетаются положительные структурные и электрохимические эффекты, обусловленные небольшими добавками марганца и магния. В отожженном состоянии они обладают более высокой коррозионной стойкостью, чем А1 и сплав АМц. В отличие от сплава АМц для сплава Д12 не отмечается случаев появления расслаивающей коррозии в нагартованном состоянии.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σtТ | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |