Медно-никелевый сплав
- НМЖМц28-2.5-1.5
- МНЦС16-29-1.8
- МНЦ18-27
- МНЦ18-20
- МНЦ15-20
- МНЦ12-24
- МНМцАЖ3-12-0.3-0.3
- МНМц43-0.5
- МНМц40-1.5
- МНМц3-12
- МНЖМц30-1-1
- МНЖМц10-1-1
- МНЖКТ5-1-0.2-0.2
- МНЖ5-1
- МНА6-1.5
- МНА13-3
- МН95-5
- МН25
- МН19
- МН16
- МН10
- МН0.6
К медно-никелевым сплавам относятся сплавы на основе меди, в которых основным легирующим элементом является никель. Легирование меди никелем значительно повышает ее механические свойства, коррозионную стойкость, термоэлектрические характеристики. Промышленные медно-никелевые сплавы можно условно разделить на две группы: конструкционные и электротехнические. К первой группе относятся коррозионно-стойкие и высокопрочные сплавы типа мельхиор, нейзильбер и куниаль. В качестве дополнительных легирующих элементов в них добавляют марганец, алюминий, цинк, железо, кобальт, свинец, а также хром, церий, магний, литий.
Мельхиоры имеют высокую коррозионную стойкость в различных средах - в пресной и морской воде, в органических кислотах, растворах солей, в атмосферных условиях. Добавки железа и марганца увеличивают стойкость медно-никелевых сплавов против ударной коррозии. Являясь твердыми растворами, мельхиоры обрабатываются давлением в горячем и холодном состоянии.
Сплавы на основе меди, в которых основными легирующими компонентами являются никель и цинк, называются нейзильберами. Они представляют собой твердые растворы на основе меди. Легирование цинком приводит к повышению механических свойств медно-никелевых сплавов и приданию им красивого серебристого цвета и удешевлению. Нейзильберы отличаются высокой коррозионной стойкостью: не окисляются на воздухе, сравнительно устойчивы в органических кислотах и растворах солей. Нейзильберы обрабатываются давлением в горячем (за исключением свинцовистого нейзильбера) и в холодном состоянии. Небольшое количество свинца вводится для улучшения обработки резанием.
Сплавы на основе тройной системы Сu-Ni-А1 называют куниалями. Эти сплавы отличаются высокими механическими и упругими свойствами, коррозионной стойкостью, устойчивостью при низких температурах. Обрабатываются давлением в горячем состоянии.
Согласно диаграмме состояния предел растворимости а-твердого раствора на основе меди резко уменьшается с понижением температуры. Поэтому куниали относятся к дисперсионно-твердеющим сплавам. Они упрочняются после термической обработки, заключающейся в закалке с 900-1000 °С в воду и старении при 500-600 1-2 ч. При старении происходит распад пересыщенного твердого раствора с образованием двух- или трехфазной структуры с мелкодисперсными выделениями 0-фазы, представляющей собой соединение NiAl, или одновременно 6- и Р-фазы, представляющей собой соединение NiAl2.
К конструкционным медно-никелевым сплавам также относятся сплавы МН95-5 и МНЖ5-1, обладающие высокими механическими свойствами и коррозионной стойкостью, они не склонны к коррозионному растрескиванию.
Были предложены новые группы дисперсионно-твердеющпх сплавов на основе системы Сu-Ni. Это сплавы для токоведущих пружин, работающих при высоких температурах (до 250 °С) состава: 1) Ni (15-20)%, Сr (3,5-4)%, Мn (2,1-3)%, V (0,01-0,5)%, Се (0,01-0,05) %, остальное Сu; после термической обработки (закалка + старение) сплав имеет следующие свойства: 370HV; σв = 1250 МПа; δ = 3%; 2) Ni (4-4,5)%, Si (0,8-1,2)%, Сr (0,4-0,6) %, Аl (0,7-1,1)%, Mg (0,3-0,6) %, Li (0,005-0,04)%; остальное Сu; после термической обработки (закалка + старение): 310 HV; σв = 1000 МПа; σ0,2 = 930 МПа; Е = = 130 ГПа; σупр = 825 МПа; электропроводность составляет 20 % электропроводности меди.
Разработана принципиально новая группа сплавов типа нейзильбер с двухфазной (а + в) структурой, например сплав Сu-15% Ni -37,5% Zn. К этим сплавам применяется обработка «микродуплекс», заключающаяся в закалке с последующей холодной деформацией с заданной степенью обжатия, определяющей возможность прохождения рекристаллизации при старении с одновременным выделением в-фазы.
Выделение в-фазы облегчает зарождение рекристаллизованных зерен вследствие обеднения пересыщенного твердого раствора и тормозит их рост благодаря снижению энергии их границ. В результате такой обработки образуются сверхмелкие зерна и мельчайшие выделения второй фазы, что приводит к росту механических свойств, особенно предела усталости, а при старении приобретается сверхпластичность.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σtТ | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |